Tag Archives: Humber

Storm Surge Jan 13th 2017- Stay Alert This Evening.

It’s 6.45 AM as I’m writing this, listening to Radio Humberside and watching the snow fall on my garden in Barton-upon-Humber. For the past hour I’ve been following the news, updates from Twitter, and the reporting from live tidal gauges, trying to get an idea of the materialising image of this storm surge.

A storm surge occurs when low atmospheric pressure during storms causes the sea level to rise. This is because the low pressure draws up the water level. This is a basic explanation, but a 1mb reduction in atmospheric pressure will result in a 1cm increase in sea level. On top of the sea level increase caused by this, storms are usually windy and whip up significant waves, adding further level to the water.

To cause flooding, a significant surge needs to coincide with a high tide, usually a high spring tide like we are experiencing at the moment. If the surge coincides with the low tide, it results in nothing more than an unusually high low tide level but is not a risk. This page from the MetOffice provides a great description of them.

This combination was what drove the warnings for flooding along the East Coast of England this morning. Fortunately, the flooding feared did not occur. It is important for me to be very clear now that the main risk, and the flooding warnings for today, refer to the tide this evening – keep listening to the Environment Agency, do what they say, and keep an eye on their warnings here

From the National Oceanographic Centre we can see forecasts for storm surges at tidal gauge sites. Below are the forecasts for today for the Immingham gauge – the peak surge is forecast to be over 2m. If this was to occur with the high spring tide due at Immingham this evening, over 7.4m, it could produce water levels in excess of 9.4m which would be higher even than 2013. Thankfully, the peak of the surge is forecast to occur prior to the high tide. This has happened numerous times in the past, where large surges have coincided with low tides.

surge-forecast

This does not mean there is no risk by any measure – the water levels this evening will be higher than this morning. This forecast could turn out to have predicted the timing wrong. Surges can also have the effect of drawing in the high tide, causing it to occur slightly early as demonstrated by Horsburgh and Wilson (2007) (Paywall). The winds forecast also did not occur this morning but the could arrive during the day, adding to the waves.

Storm surges are complex, with numerous facets combining to cause the risk. This makes them difficult to forecast and can evolve and change quickly. The Environment Agency have done a superb job is warning and preparing these past few days and should be commended for this work. It is also encouraging to see the greater appreciation for tidal flooding risk from the media and the public – awareness is vital component in reducing the dangers of flooding.

Stay alert and stay safe.

Another Storm Surge? Keep your eye on the forecasts!

There are warnings emerging of a storm surge along the East Coast of England for this Friday (13th January 2017). At the time of writing these are a low risk warning, but the situation can change so keep your eyes open for updated warnings from the MetOffice and Environment Agency, such as the Flood Information Service.

If you’ve read this blog before you will know that I have performed plenty of computer model simulations of the 2013 storm surge in the Humber Estuary. Thankfully, it does not look like this Friday’s surge will result in flooding, and not on the scale of 2013, but I thought I’d share a simulation of the latest model anyway. This is a simulation of the 2013 storm surge –

There still, as ever, more work to do but it’s getting there.

Made In Hull – City of Culture Kick Off #Madeinhull #hull2017 #CityofCulture

It’s 2017 and Hull’s big year is finally here. It all started with a huge fireworks display from two barges in the Estuary, which we watched from the top of a hill on the south bank having now repatriated myself as a “yellow-belly”. The opening week has been marked by “Made in Hull” – a series of light projection exhibits around the City Centre, focused on Queen Victoria Square where the crowds are immersed by projections on the City Hall, Feren’s Art Gallery and the Maritime Museum.

The first video here shows a brief snippet of the light show on Hull’s The Deep aquarium, standing where the Hull’s eponymous river flows into the Humber Estuary.

This next video shows the Hull Blitz segment from the main display in Queen Victoria Square. It’s difficult to convey the power of this piece, the chilling hush that descends over the crowd as the word “war” is repeated, the noise and the atmosphere of the search lights ahead. It’s only a small measure of what the terror of living in the most bombed city outside of London must have been like.

Made in Hull has been utterly superb and a very fitting start to 2017 – if it continues like this we’re in for a fantastic City of Culture year.

WE ARE HULL

Hurricane in the Humber : Modelling the Unthinkable

We’ve all been stunned by the images of Hurricane Matthew tearing through the southern States of the east coast of the USA, and the footage of the resulting storm surge sweeping into these coastal areas. We should not forget Haiti and the carnage once again unleashed on this nation, and the ongoing struggles the people will have there for years to come. The power of nature can simultaneously be awe inspiring and horrendously destructive.

In the UK we are relatively blessed in our sheltered position from natural disasters – it is difficult to imagine just what it is like as a nation to suffer an event on this magnitude, just as we could scarcely imagine what the impact of an earthquake or a volcano might be. But what if the unthinkable did happen? What if Hurricane Matthew did hit the UK with the full force of a Category 4 or 5 storm? How would the storm surge look like?

My research involves using numerical (computer) models to understand how nature works, in particular the movements of water. In the past I have used these models to simulate the workings of the Humber Estuary, UK, and some of that work includes simulating “worst case scenarios”. Before the 2013 storm surge this was often thought to be equivalent of the 1953 event, but now the baseline is 2013. On December 5th 2013, a storm in the North Sea caused a storm surge of around 1.8 m to form, coinciding with a high-tide resulting in the storm tide1.

1To pose a threat a storm surge needs to coincide with a high-tide. This combination is called a storm tide. A surge which coincides with a low-tide probably will not pose a risk, and the peak water levels will usually be lower than that of a normal high-tide. This obviously depends on the size of the surge and local difference between low- and high-tides.

A category 4 or 5 hurricane hitting the Humber and the UK at that strength is way beyond our “worst case scenario”, and reveals little to us about the nature of the Humber and the state of our defences. However, simulating it does provide prospective of the scale of the event and helps us understand just how powerful and destructive they are. At St Augustine, Florida, the surge was estimated to be 2.75 m, adding this swell to the tidal sea level – looking at the surge from 2013 this is nearly 1 m greater.

The represent this in our Humber model I have done nothing more sophisticated than simply adding 1 m height to all the water level data we use to simulate the 2013 flooding. The video below shows the results – it looks pretty bad and it would be, but we need to consider some aspects of the model to fully understand what we are seeing. The model uses a smooth representation of the land surface, as in it has no buildings, walls, roads, hedges, tree etc which would stop or slow the flow of water, although it does have a representation of flood defences. This means once the water levels exceed the defences and spill over on to the land the water can just keep flowing, when in reality it would be stopped by obstacles – so the area flooded in the model is larger, yet probably shallower, than we would expect.

This is truly an unthinkable event and we would not expect a surge of 2.75 m to be seen in the Humber. However, global sea levels are rising and our best predictions suggest that the base sea level in the Humber will be around 1 m higher in 100 years time – from this point, the 1.8 m surge from the 2013 event would cause water levels of the same height as a 2.75 m surge in the present day. As our climate warms, providing more energy to the atmosphere, we can also expect our weather to become more stormy and events like 2013 will become more common. This paints a bleak picture and presents coastal areas like the Humber a major challenge for the rest of this century.

The good news is that those responsible for our flood defences are aware of this challenge and are developing their plans to help us face it. Our model is already out of date as several areas around the Humber have had their flood defences improved since 2013, and there are plans for more – this process will be continuously assessed and developed in the future to keep people and property safe. Models such as our will be used to test those plans and the contribute to designing new schemes. The challenge is great but we can meet it.

The Future for Spurn Point – Revisited

Recent high tides have taken their toll on Spurn, washing away the beach across the breach, leaving only a bed of loose gravel. It is now impassable even to the off-road 4×4’s used to ferry staff to and from ABP’s signalling station.

IMG_3815

It has led to discussion in the local media over whether Spurn is still a spit, or is it more accurate now to call it an island. I don’t think we’re there yet, but the direction it’s heading it probably isn’t going to be long.

BBC Look North’s coverage

Now is a good time to revisit my blog post from the GEESology blog back in March this year. It was Part Four in a four-part blog looking back over the year since the December 5th 2013 storm surge.

Storm Surge 2013 : One Year On – Part Four : Spurn

by @cloudskinner

This is the fourth and final installment of our mini-series looking back over the year since the 5 December 2013 storm surge, which flooded many areas in the Humber Estuary and along the east coast of the UK…