Tag Archives: geography

OTD Humber Storm Surge – 05/12/2013

No score and three years ago the storm surge of December 5th 2013 swept along the East Coast of England, and the Humber Estuary. There was flooding in Grimsby and Hull, and the port at Immingham was also badly flooded. One of the worst affected areas of the village of South Ferriby on the South Bank of the Humber, a few miles away from my home town of Barton-upon-Humber.

Since the event, my colleagues and I have done a lot of research and work based on this event. This post will briefly highlight some of this, how you can find out out more, and what we have planned for the future.

IMG_3862

At the time I was working on a project called Dynamic Humber helping to develop the CAESAR-Lisflood model. Although the original intention was to use the model to predict long-term geomorphic trends in the Estuary, basically how we can expect the mud and sediments to move and change over time, the storm surge changed the focus to flood risk.

We published our work on this in early 2015 – see the academic paper here.

The modelling technique was developed for other areas by my colleague Jorge Ramirez, and this research can be seen here.

This research led to us using our modelling to help the Environment Agency, and this work is ongoing still. We are also seeking to further the work of simulating the sediment processes within the Estuary,and understanding how this might influence future flood risk.

IMG_3816

One of the enduring images of the event was the breach it punched in the spit-like feature at mouth, Spurn Point. For nearly two centuries Spurn has essentially been a man-made structure, and its origins, true nature, and hence its future, are largely a mystery. Read more on this here.

In Easter 2015, a PhD project was begun to try and model the future of Spurn Point, merging a model of the North Sea with our model of Humber.

Finally, SeriousGeoGames emerged as a direct consequence of this event and our modelling of it. The first application, Humber in a Box, shows a simplified version of our Humber model in an attractive, immersive, virtual reality environment. By raising the sea level we can see how flood risk in the Estuary is likely to change over time.

Humber in a Box

If you have a Cardboard-style headset, try the YouTube demo here.

I’m currently working with some talented students from SEED Software on the second iteration of Humber in a Box, called TideBox. We hope to make the application more ‘self-led’ and more generic about estuaries and tide, making more accessible.

There are likely to be lots of exciting developments in 2017 and I will bring you them as soon as I can.

 

 

Hurricane in the Humber : Modelling the Unthinkable

We’ve all been stunned by the images of Hurricane Matthew tearing through the southern States of the east coast of the USA, and the footage of the resulting storm surge sweeping into these coastal areas. We should not forget Haiti and the carnage once again unleashed on this nation, and the ongoing struggles the people will have there for years to come. The power of nature can simultaneously be awe inspiring and horrendously destructive.

In the UK we are relatively blessed in our sheltered position from natural disasters – it is difficult to imagine just what it is like as a nation to suffer an event on this magnitude, just as we could scarcely imagine what the impact of an earthquake or a volcano might be. But what if the unthinkable did happen? What if Hurricane Matthew did hit the UK with the full force of a Category 4 or 5 storm? How would the storm surge look like?

My research involves using numerical (computer) models to understand how nature works, in particular the movements of water. In the past I have used these models to simulate the workings of the Humber Estuary, UK, and some of that work includes simulating “worst case scenarios”. Before the 2013 storm surge this was often thought to be equivalent of the 1953 event, but now the baseline is 2013. On December 5th 2013, a storm in the North Sea caused a storm surge of around 1.8 m to form, coinciding with a high-tide resulting in the storm tide1.

1To pose a threat a storm surge needs to coincide with a high-tide. This combination is called a storm tide. A surge which coincides with a low-tide probably will not pose a risk, and the peak water levels will usually be lower than that of a normal high-tide. This obviously depends on the size of the surge and local difference between low- and high-tides.

A category 4 or 5 hurricane hitting the Humber and the UK at that strength is way beyond our “worst case scenario”, and reveals little to us about the nature of the Humber and the state of our defences. However, simulating it does provide prospective of the scale of the event and helps us understand just how powerful and destructive they are. At St Augustine, Florida, the surge was estimated to be 2.75 m, adding this swell to the tidal sea level – looking at the surge from 2013 this is nearly 1 m greater.

The represent this in our Humber model I have done nothing more sophisticated than simply adding 1 m height to all the water level data we use to simulate the 2013 flooding. The video below shows the results – it looks pretty bad and it would be, but we need to consider some aspects of the model to fully understand what we are seeing. The model uses a smooth representation of the land surface, as in it has no buildings, walls, roads, hedges, tree etc which would stop or slow the flow of water, although it does have a representation of flood defences. This means once the water levels exceed the defences and spill over on to the land the water can just keep flowing, when in reality it would be stopped by obstacles – so the area flooded in the model is larger, yet probably shallower, than we would expect.

This is truly an unthinkable event and we would not expect a surge of 2.75 m to be seen in the Humber. However, global sea levels are rising and our best predictions suggest that the base sea level in the Humber will be around 1 m higher in 100 years time – from this point, the 1.8 m surge from the 2013 event would cause water levels of the same height as a 2.75 m surge in the present day. As our climate warms, providing more energy to the atmosphere, we can also expect our weather to become more stormy and events like 2013 will become more common. This paints a bleak picture and presents coastal areas like the Humber a major challenge for the rest of this century.

The good news is that those responsible for our flood defences are aware of this challenge and are developing their plans to help us face it. Our model is already out of date as several areas around the Humber have had their flood defences improved since 2013, and there are plans for more – this process will be continuously assessed and developed in the future to keep people and property safe. Models such as our will be used to test those plans and the contribute to designing new schemes. The challenge is great but we can meet it.

The @GEESatHull Staff vs Student Football Game – Report by @Tom_Coulthard

News just in from our Sports Correspondent, Tom Coulthard, of the much anticipated Staff vs Student Football Game –

Old Football

The Staff Team before Kick-Off

“Match Report: GEES staff vs students football. 11th May 2016.

A bright Wednesday afternoon saw the inaugural GEES Staff vs Students football match. Played with 8 a side and rolling substitutes, the Students were all in a blue strip and the Staff, playing a 4, 3, 1 (Christmas tree) formation, in largely not blue. The first five minutes saw a flurry of chances from Staff, with shots on target from Bettley and Bond drawing a string of sharp saves from the students agile keeper. However, the students weathered the early storm and neat interplay saw them quickly score twice. As the game settled the Staff keeper (Hu) made two brave saves, but continued pressure from the students saw another goal deflected in. In the midfield, Baines, Jennings and XuXu were industrious and a period of Staff possession saw a deep cross to the back post nodded against the woodwork from a – rising like a salmon Skinner header. Hu then took an unfortunate blow with a foot to the spectacles (literally, not metaphorically) forcing a late keeper substitution.

A half time saw a tactical change from the Staff, with Bond drawn back to sit in front of the defensive 4 and Parsons moved up to play a lone striker role. This cunning change reaped immediate benefits, with Parsons scoring a well taken low shot greeted by cheers from the Staff supporters. The Students then scored another well worked goal, before Parsons scored again taking the score to 2:4. Staff continued to press, with a powerful drive from Jonas, but as the game wore on, Staff legs suffered (positionally sagging to no real formation) allowing the Students to work in a couple of well crafted one touch goals. Two more were fired in by the students in the closing minutes to leave the final score 2:8. Handshakes and congratulations followed – with the game being played in an excellent spirit, cheered on by some 30 students and staff.

Tom Coulthard.”

MuppetBabiesPUPPETS

The Student Team before Kick-Off

This match was played for charity, with all Staff players contributing a Club fee and the Students collecting with buckets. The funds will go towards care for the two broods of ducklings that inhabit the Cohen Building each spring, and also towards conservation at Spurn Point. All in all, it was a great success.

Hull University Science Festival with @SeriousGeoGames

It’s that time of year again, one of the most exciting times of the year for me. This weekend, on Friday 18th and Saturday 19th, is the Hull University Science Festival. It’s my fourth time presenting an exhibit here, and it’s come a long way. This year, I will be leading a team of helpers with an exclusively SeriousGeoGames exhibit – on behalf of the Department of GEES.

In 2013, when the event was called the Science Showcase and took part in Hull Town Hall, I was inexperienced (still to submit my thesis!), and was asked to present the Dynamic Humber Project I was employed on. Our exhibit was not very good, composing a stale poster and an informative, but not very interesting, presentation we had to project on to the ceiling! We were later joined on the ceiling by the plastic balls from Becky Williams’ awesome liquid nitrogen volcano demonstration!

My Mother-in-law, Beverley, trying Humber in a Box

In 2014, I stepped up my game a little and so did the event. The first true Hull University Science Festival, we were housed in a large marquee on Campus. I presented a hacked version of the Humber CAESAR-Lisflood model, with a slider to raise sea level – it was the precursor to Humber in a Box. The participants found it interesting when they used it, but many people bypassed us as we were sandwiched between a 3D Printer and HIVE – to be honest, I would have done the same.

My favourite ever interaction came during this event, which went something like this –

Me – You move the slider and you raise the sea level in the Humber.

Schoolgirl 1 – (With full sincerity) In real life?

Me – (Struggling to come up with a reply) No, just in the model.

Schoolgirl 2 – (Said in a way only a close friend could) Don’t worry about her, she’s really thick.

I’m not sure you can every really train or prepare yourself for conversations like this! She wasn’t “thick” as her friend cruelly suggested, and I am constantly blown away by how bright and engaged the school pupils who visit us are – it really is a joy explaining our science to them.

Last year, I had Humber in a Box at my disposal for the first time. The exhibit I was part of also featured the River in a Box mini-flume, and the this and the excitement of the VR headset ensured a busy couple of days!

Now in 2016, we will be presenting Humber in a Box, but also Flash Flood! for the first time. We have be demonstrating the application on a large TV, and you’ll get the chance to explore our virtual river valley. We will also have some of the field equipment used to make the application on display. I’m really proud of Flash Flood! and am very excited about demonstrating it in public for the first time.

Looking forward to seeing you there! Details here.

New Discussion Article in @EGU_ESurf

Some of Prof Tom Coulthard‘s and my own research has just been published as a discussion paper in the European Geoscience Union’s Journal – Earth Surface Dynamics. It’s my first proper open-source paper, so this release is not yet peer reviewed but will be reviewed in the same way with anonymous reviewers. However, it is also open to anyone to make comments (but these are public, so no hiding). After review, and edits, hopefully it will be published fully later in the year.

Kisdon Force on River Swale

Kisdon Force on River Swale

© Copyright George Tod and licensed for reuse under this Creative Commons Licence.

Here is where I try to write a ‘plain English’ summary of the work and the backstory. The work was conducted as part of the Natural Environment Research Council funded project, Flash Flooding from Intense Rainfall. The project hopes to improve our ability to forecast the intense, rapidly forming, but small and short-lived thunderstorms which can trigger flash flooding in the right conditions. We want to be able to predict their occurrence better and also understand the conditions required for flash flooding. We (Tom and I), in particular, look at the erosion and deposition which occur during the flash floods.

The computer model we use (CAESAR-Lisflood) was only able to use an input of rainfall which is averaged out over the whole area covered. These areas can be quite large, and as you probably know, if it’s raining in one part of the town you live, it might not be raining over another part. With the storms we are looking at they exist at a scale often much smaller than a whole river catchment, so that intensity is smoothed out by the model. This will likely reduce local river flows (in the model) and consequently reduce the amount of material (rocks, stones, mud etc) moved around (in the model).

Clearly, we needed to add the ability to represent rainfall in much greater detail, so I came up with a plan and arranged to meet with Tom to discuss how I was going to build this into to the computer code. I sat down with Tom and told him my plan, and in typical Tom fashion he tells me “I’ve already done this, I’ll send you the code”.

This single sentence saved me several months of coding and debugging and banging my head on my desk.

We used rainfall records taken from the MetOffice’s archive based on weather RADAR measurements. For the River Swale catchment (the catchment of choice for testing CAESAR-Lisflood), this data was available in grid squares of 5 km x 5 km, and recordings every 15 minutes. We wanted to test how the model reacts to the same rainfall data but applied in different resolutions, so we averaged out this data to various resolutions, both spatially (5 km, 10 km, 20 km and full catchment), and temporally (15 min through to 24 hours).

Incredibly, it made a big difference, with the best resolution (5 km every 15 minutes) moving over twice as much material as the worst (Full catchment every 24 hours) in some cases! We then looked at the longer term impacts by repeating our rainfall record (but jumbling up the locations at the end of each ten year cycle) for 1000 years (in the model). This showed that using the best resolution rainfall instead of the worst predicted more erosion in upland areas, and more deposition in lowland areas – this has implications for studies looking at the long term development of landscape that often use averaged rainfall records which miss out this detail.

This is because of the relationship between the discharge of a river (the amount of water flowing past a point in a specified time) and the amount of material moved is disproportionate. We called it ‘non-linear’, in that a small increase in the discharge results in a big increase in material moved – by representing the rainfall in greater detail, the model focusses it over a smaller area for a shorter amount of time, increasing the discharge in that section of the river.

The research also highlights the need to consider how our rainfall is likely to change with climate change. Often, only the overall change in volume of rainfall is considered but if this is in the form of frontal rain which covers large areas over long periods, the rain is low intensity and will unlikely cause flash flooding or move much material. If we are to expect an increase in the intense thunderstorms then we can expect our rivers to become more active in the future – the implications of which are as yet unknown.

The paper is free to read, so does not require a subscription, and can be viewed here.