Tag Archives: caesar-lisflood

Below Sea Level does not mean Below the Sea.

This post represents my own views and is not intended to represent the views of my employer, present or past.

I’ve been umm-ing and ah-ing for a couple of months now about whether to write this blog, but I think I have finally had enough. You see, in Hull, we are at risk of flooding from the sea, or more specifically, the Humber Estuary. This risk emerges when low pressure out in the North Sea, caused by the storms, which can be common in the winter, effectively suck up the sea causing it to raise a little. High winds whip up waves, and these add a little more height to the water. All of this has the potential to raise the level of the sea, for a few hours, by up to a couple of metres. On December 5th 2013, a storm surge (as these events are called) raised the water level in the Humber by 1.7 metres.

The added complexity to this are the tides. The difference in the water level between low and high tide at Hull, according to the Associated British Ports (ABP) is between 3.5 m for a neap tide, and 6.9 m for a spring tide – this staggers the level we have determined to be 0 m, or sea level. This means the risk of flooding is all a matter of timing. If, on December 5th 2013, the storm passed by a few hours earlier or later the surge would have aligned with the low tide, and the additional 1.7 m would have barely been noticed by anyone. However, it was timed with a high spring tide, resulting in record water levels in the Humber and caused flooding in Hull and around the Estuary.

Coastal flooding

Graphic showing how coastal, or tidal, flooding forms. This was the type of flooding which occurred around the Humber in 2013. Thanks to NERC for producing these great resources. 

When we design and build flood defences on the coast we don’t build them to just hold back tidal levels of the water, but also to defend against enhanced water levels produced by storm surges. Since 2013, the defences around Hull have been updated and a repeat of the event would result in little or no flooding in the city – I don’t know the exact level of the defence, but we can say that it is able to contain sea levels of at least 1.7 m higher than the highest natural tidal level.

A big issue facing Hull is sea level rise. Sea level has been rising since the end of last ice age, and is set to continue in the future. On top of this, the climate change caused by our industry is accelerating this. Our best estimates for the Humber area, assuming that as a species we continue increasing our influence on the climate, suggest the sea level will be around 1 m higher in 100 years than they are today – this will increase the risk of flooding and we need to ensure that the public understand this and that we continue to invest in improving the standards of our defences to keep pace.

On the first point, talking to residents of Hull about the risk of flooding from the Estuary provokes two responses. (1) There is a lack of appreciation of the risk from the Estuary, and when I start to talk about the 2013 flooding, people tend to share with me their experiences of the 2007 flooding (a surface flooding event). (2) People tend to feel that there is no point in doing anything as “Hull will be underwater in 100 years”. This latter point is what I want to discuss here, it’s a common perception and leads to a kind of apathy where people become disengaged with flood risk and actions to mitigate for it, but it is wrong.

It is a deeply held belief that goes beyond even the city – in 2015, Dr Hugh Ellis, the now Head of the Town and Country Planning Association (TCPA), made the claim that the city would be underwater in 100 years –

“We need to think about moving populations and we need to make new communities. We need to be thinking, does Hull have a future?” (Source – Daily Telegraph)

Ok, he was trying to make a valid point, one that sea level rise is going to increase the risk of flooding for coastal cities, but I don’t think bold, and inaccurate statements, like this are helpful, and they only result in residents of the areas becoming disengaged – why do anything about the problem if it is futile?

But where does this idea come from? Why are people convinced Hull will be underwater in 100 years? Why do people think it will become the “Venice of the North”? Well, look at the map below –

surging seas

Screenshot from Climate Central’s Surging Seas Risk Zone Map – this shows the Humber Region, UK, with a 1 m sea level applied.

This is map of ‘risk’ taken for the Humber area. For areas outside of the US, the Risk Map has been produced using a map of land heights obtained from space by the Shuttle Radar Topography Mission, which mapped the entire globe at resolutions between 30 m and 90 m. The areas shaded in blue are all those ‘below sea level’ – normally 0 m, but in the map above I’ve set it at 1 m to represent the predicted sea level in 100 years time. Hull isn’t labelled on that map, but it basically the large blue area between North Ferriby and Hedon – very clearly ‘under water’.

But the method is problematic, it’s too simple. An average measurement of land heights over a 30 m area is fantastic when considering it is for the whole planet, however for determining flood risk it’s a bit rubbish. It smooths the land surface, removing obstacles, like wall, roads and buildings, and crucially, flood defences. The method also ignores ‘hydraulic connectivity’*, basically meaning that for water to flood an area it has to have a source of water and a route for it to get there – flood defences work by removing this hydraulic connectivity and this is why today the Humber region, and much of Holland, is close to or below sea level, but not under the sea.

To understand the actually risk posed by sea level rise requires a more complex model, one which accounts for tides, contains more detailed data, and more importantly includes flood defences. Our model (paper here behind paywall) does this, and a version of it is incorporated into Humber in a Box – with both of these we observe no flooding around the Estuary for natural tides with a 1 m sea level rise. This is because the defences are built to hold back the much higher water levels caused by storm surges.

Climate Central have been careful to refer to this shading as ‘risk’, and not direct inundation by the sea, but the use of blue and not making this explicit anywhere opens this up to mis-interpretation where ‘below sea level’ means ‘below the sea’. This is clearly happening – see this article in the Conversation, which made the BBC Sports pages, which used the app to suggest Everton’s new stadium “could end up underwater” in the future, or this article shared by the awesome Geomorphology Rules  Facebook page, suggesting that coastal cities in the US will be “drowning in water”.

Sea level rise is going to increase the risk of flooding in coastal cities but they are not going to be under water. The risk does not emerge from the tidal water levels, which will most likely be contained by present defences, or those to be built in the future. However, the risk from storm surges will increase – the likelihood of events like December 5th 2013 is set it increase, both in strength and frequency, and with 1 m extra sea level in 100 years our defences will need to be updated to cope with the enhanced levels. This will take a lot of money, a lot of effort, a lot of political will, and this requires the buy in and support of the residents of these areas. Telling them, or suggesting, that they will be required to relocate will only achieve the opposite.

Sea level rise and the related flood risk is a complex issue and we can’t keep trying to find simple answers.

*For areas within the US, the method uses much higher resolution height data, and accounts for hydraulic connectivity by shading areas differently.

New Discussion Article in @EGU_ESurf

Some of Prof Tom Coulthard‘s and my own research has just been published as a discussion paper in the European Geoscience Union’s Journal – Earth Surface Dynamics. It’s my first proper open-source paper, so this release is not yet peer reviewed but will be reviewed in the same way with anonymous reviewers. However, it is also open to anyone to make comments (but these are public, so no hiding). After review, and edits, hopefully it will be published fully later in the year.

Kisdon Force on River Swale

Kisdon Force on River Swale

© Copyright George Tod and licensed for reuse under this Creative Commons Licence.

Here is where I try to write a ‘plain English’ summary of the work and the backstory. The work was conducted as part of the Natural Environment Research Council funded project, Flash Flooding from Intense Rainfall. The project hopes to improve our ability to forecast the intense, rapidly forming, but small and short-lived thunderstorms which can trigger flash flooding in the right conditions. We want to be able to predict their occurrence better and also understand the conditions required for flash flooding. We (Tom and I), in particular, look at the erosion and deposition which occur during the flash floods.

The computer model we use (CAESAR-Lisflood) was only able to use an input of rainfall which is averaged out over the whole area covered. These areas can be quite large, and as you probably know, if it’s raining in one part of the town you live, it might not be raining over another part. With the storms we are looking at they exist at a scale often much smaller than a whole river catchment, so that intensity is smoothed out by the model. This will likely reduce local river flows (in the model) and consequently reduce the amount of material (rocks, stones, mud etc) moved around (in the model).

Clearly, we needed to add the ability to represent rainfall in much greater detail, so I came up with a plan and arranged to meet with Tom to discuss how I was going to build this into to the computer code. I sat down with Tom and told him my plan, and in typical Tom fashion he tells me “I’ve already done this, I’ll send you the code”.

This single sentence saved me several months of coding and debugging and banging my head on my desk.

We used rainfall records taken from the MetOffice’s archive based on weather RADAR measurements. For the River Swale catchment (the catchment of choice for testing CAESAR-Lisflood), this data was available in grid squares of 5 km x 5 km, and recordings every 15 minutes. We wanted to test how the model reacts to the same rainfall data but applied in different resolutions, so we averaged out this data to various resolutions, both spatially (5 km, 10 km, 20 km and full catchment), and temporally (15 min through to 24 hours).

Incredibly, it made a big difference, with the best resolution (5 km every 15 minutes) moving over twice as much material as the worst (Full catchment every 24 hours) in some cases! We then looked at the longer term impacts by repeating our rainfall record (but jumbling up the locations at the end of each ten year cycle) for 1000 years (in the model). This showed that using the best resolution rainfall instead of the worst predicted more erosion in upland areas, and more deposition in lowland areas – this has implications for studies looking at the long term development of landscape that often use averaged rainfall records which miss out this detail.

This is because of the relationship between the discharge of a river (the amount of water flowing past a point in a specified time) and the amount of material moved is disproportionate. We called it ‘non-linear’, in that a small increase in the discharge results in a big increase in material moved – by representing the rainfall in greater detail, the model focusses it over a smaller area for a shorter amount of time, increasing the discharge in that section of the river.

The research also highlights the need to consider how our rainfall is likely to change with climate change. Often, only the overall change in volume of rainfall is considered but if this is in the form of frontal rain which covers large areas over long periods, the rain is low intensity and will unlikely cause flash flooding or move much material. If we are to expect an increase in the intense thunderstorms then we can expect our rivers to become more active in the future – the implications of which are as yet unknown.

The paper is free to read, so does not require a subscription, and can be viewed here.