I am super-excited to be Convening a session on Games for Geoscience at the 2018 General Assembly of the European Geoscience Union (EGU). In fact, I am so super-excited, I am prepared to use the phrase ‘super-excited’. I am also super-excited to be co-convening alongside two of my favourite people, Sam Illingworth and Rolf Hut.
I like playing games. Personally, I’m not a fan of board games, I prefer games with a narrative – I like tabletop strategy games, having been addicted to Games Workshop games since the age of 10. I like computer games, but having slow reactions and no hand-to-eye co-ordination, I have to stick to games like Football Manager (which my wife describes as ‘just answering emails’).
It’s probably not surprising then my research revolves around numerical modelling. There is great potential for game-like application for numerical modelling – I once got a group of 40+ 9-year olds running CAESAR-Lisflood by describing it as ‘Minecraft with worse graphics’ – and those who work with them often have a playful curiosity. We like to ask questions like ‘I wonder what happens if I do this?’, and this playful curiosity can lead to the discovery of some of the most fundamental knowledge about how our planet works.
From the original hacked version of CAESAR-Lisflood, through to TideBox and the Defend the City workshop, I’ve found that the numerical model has lent itself to a gaming environment extraordinary well for the use in teaching and public engagement.
Games are pervasive throughout Geosciences, finding use in research, in teaching, and in wider communication. They are powerful training tools. I bet you have used or played games in your work, maybe without even realising it. If you have, then this is the session for you! We are not going to be strict about definitions for what is considered a game or not, just as long as it is playful, interesting, and most importantly, fun.
Abstract submission is open from 13th October 2017, and closes 10th January 2018.
If you’ve never submitted to an Educational and Outreach Symposia (EOS) session before, I would encourage you to do so – they are very enjoyable, and as they don’t prohibit you submitting another Oral abstract for another session they are great way to maximise the exposure of your research.
Alongside the session we are hoping to host a related gaming session, giving us all the opportunity to try each other’s games – have something you want to bring along? Let us know.
EGU Blood Bowl Cup – I’m also interested in running the first ever EGU Blood Bowl Cup. I only need at least one opponent to make this happen, so let me know if you want in. I might even make a special pitch for the occasion.
Back in January I wrote about how the turbine blade, which was in Hull City Centre briefly, looked photoshopped in every picture I saw of it. It even looked photoshopped in real life, which was quite odd.
Now, researchers at the University of Lincoln have found that it’s all a trick of the light, with the blade lit from the side whilst our brains are thinking that it surely must be lit from above by the sun.
Read the research article here. Or, read the BBC article here.
This post represents my own views and is not intended to represent the views of my employer, present or past.
I’ve been umm-ing and ah-ing for a couple of months now about whether to write this blog, but I think I have finally had enough. You see, in Hull, we are at risk of flooding from the sea, or more specifically, the Humber Estuary. This risk emerges when low pressure out in the North Sea, caused by the storms, which can be common in the winter, effectively suck up the sea causing it to raise a little. High winds whip up waves, and these add a little more height to the water. All of this has the potential to raise the level of the sea, for a few hours, by up to a couple of metres. On December 5th 2013, a storm surge (as these events are called) raised the water level in the Humber by 1.7 metres.
The added complexity to this are the tides. The difference in the water level between low and high tide at Hull, according to the Associated British Ports (ABP) is between 3.5 m for a neap tide, and 6.9 m for a spring tide – this staggers the level we have determined to be 0 m, or sea level. This means the risk of flooding is all a matter of timing. If, on December 5th 2013, the storm passed by a few hours earlier or later the surge would have aligned with the low tide, and the additional 1.7 m would have barely been noticed by anyone. However, it was timed with a high spring tide, resulting in record water levels in the Humber and caused flooding in Hull and around the Estuary.
Graphic showing how coastal, or tidal, flooding forms. This was the type of flooding which occurred around the Humber in 2013. Thanks to NERC for producing these great resources.
When we design and build flood defences on the coast we don’t build them to just hold back tidal levels of the water, but also to defend against enhanced water levels produced by storm surges. Since 2013, the defences around Hull have been updated and a repeat of the event would result in little or no flooding in the city – I don’t know the exact level of the defence, but we can say that it is able to contain sea levels of at least 1.7 m higher than the highest natural tidal level.
A big issue facing Hull is sea level rise. Sea level has been rising since the end of last ice age, and is set to continue in the future. On top of this, the climate change caused by our industry is accelerating this. Our best estimates for the Humber area, assuming that as a species we continue increasing our influence on the climate, suggest the sea level will be around 1 m higher in 100 years than they are today – this will increase the risk of flooding and we need to ensure that the public understand this and that we continue to invest in improving the standards of our defences to keep pace.
On the first point, talking to residents of Hull about the risk of flooding from the Estuary provokes two responses. (1) There is a lack of appreciation of the risk from the Estuary, and when I start to talk about the 2013 flooding, people tend to share with me their experiences of the 2007 flooding (a surface flooding event). (2) People tend to feel that there is no point in doing anything as “Hull will be underwater in 100 years”. This latter point is what I want to discuss here, it’s a common perception and leads to a kind of apathy where people become disengaged with flood risk and actions to mitigate for it, but it is wrong.
It is a deeply held belief that goes beyond even the city – in 2015, Dr Hugh Ellis, the now Head of the Town and Country Planning Association (TCPA), made the claim that the city would be underwater in 100 years –
“We need to think about moving populations and we need to make new communities. We need to be thinking, does Hull have a future?” (Source – Daily Telegraph)
Ok, he was trying to make a valid point, one that sea level rise is going to increase the risk of flooding for coastal cities, but I don’t think bold, and inaccurate statements, like this are helpful, and they only result in residents of the areas becoming disengaged – why do anything about the problem if it is futile?
But where does this idea come from? Why are people convinced Hull will be underwater in 100 years? Why do people think it will become the “Venice of the North”? Well, look at the map below –
Screenshot from Climate Central’s Surging Seas Risk Zone Map – this shows the Humber Region, UK, with a 1 m sea level applied.
This is map of ‘risk’ taken for the Humber area. For areas outside of the US, the Risk Map has been produced using a map of land heights obtained from space by the Shuttle Radar Topography Mission, which mapped the entire globe at resolutions between 30 m and 90 m. The areas shaded in blue are all those ‘below sea level’ – normally 0 m, but in the map above I’ve set it at 1 m to represent the predicted sea level in 100 years time. Hull isn’t labelled on that map, but it basically the large blue area between North Ferriby and Hedon – very clearly ‘under water’.
But the method is problematic, it’s too simple. An average measurement of land heights over a 30 m area is fantastic when considering it is for the whole planet, however for determining flood risk it’s a bit rubbish. It smooths the land surface, removing obstacles, like wall, roads and buildings, and crucially, flood defences. The method also ignores ‘hydraulic connectivity’*, basically meaning that for water to flood an area it has to have a source of water and a route for it to get there – flood defences work by removing this hydraulic connectivity and this is why today the Humber region, and much of Holland, is close to or below sea level, but not under the sea.
To understand the actually risk posed by sea level rise requires a more complex model, one which accounts for tides, contains more detailed data, and more importantly includes flood defences. Our model (paper here behind paywall) does this, and a version of it is incorporated into Humber in a Box – with both of these we observe no flooding around the Estuary for natural tides with a 1 m sea level rise. This is because the defences are built to hold back the much higher water levels caused by storm surges.
Climate Central have been careful to refer to this shading as ‘risk’, and not direct inundation by the sea, but the use of blue and not making this explicit anywhere opens this up to mis-interpretation where ‘below sea level’ means ‘below the sea’. This is clearly happening – see this article in the Conversation, which made the BBC Sports pages, which used the app to suggest Everton’s new stadium “could end up underwater” in the future, or this article shared by the awesome Geomorphology Rules Facebook page, suggesting that coastal cities in the US will be “drowning in water”.
Sea level rise is going to increase the risk of flooding in coastal cities but they are not going to be under water. The risk does not emerge from the tidal water levels, which will most likely be contained by present defences, or those to be built in the future. However, the risk from storm surges will increase – the likelihood of events like December 5th 2013 is set it increase, both in strength and frequency, and with 1 m extra sea level in 100 years our defences will need to be updated to cope with the enhanced levels. This will take a lot of money, a lot of effort, a lot of political will, and this requires the buy in and support of the residents of these areas. Telling them, or suggesting, that they will be required to relocate will only achieve the opposite.
Sea level rise and the related flood risk is a complex issue and we can’t keep trying to find simple answers.
*For areas within the US, the method uses much higher resolution height data, and accounts for hydraulic connectivity by shading areas differently.
It’s almost time to go to Vienna again for the 2017 General Assembly of the European Geoscience Union, or #EGU17. It’s promising to be another awesome week of science, schnitzel, and the collection of cold bugs from around the globe. Incredibly, it will be my fifth EGU, and I have the pleasure of being joined by a couple of first-timers from my research group – I’m looking forward to showing them the ropes.
I have two oral abstracts and a poster at this year’s meeting –
LEMSI – The Landscape Evolution Model Sensitivity Investigation Christopher Skinner, Tom Coulthard, Wolfgang Schwanghart, and Marco Van De Wiel Wed, 26 Apr, 16:30–16:45, Room N1
This talk will show the results from our global sensitivity analysis of the CAESAR-Lisflood model. This has been a large piece of modelling work, and seems to have been going forever. Our computers have been busy for well over a year, so it’s great to get the results out there.
Influence of Rainfall Product on Hydrological and Sediment Outputs when Calibrating the STREAP Rainfall Generator for the CAESAR-Lisflood Landscape Evolution Model Christopher Skinner, Nadav Peleg, and Niall Quinn Wed, 26 Apr, 17:30–19:00, Hall X2
This poster has been selected by the session conveners as being of public interest. We’ve used a rainfall generator to produce ensembles of high spatial and temporal resolution rainfall, and used this to drive the CAESAR-Lisflood model – the results are very interesting indeed!
SeriousGeoGames – Geoscience Virtual Reality Experiences for Festival Settings Christopher Skinner Thu, 27 Apr, 10:45–11:00, Room L4/5
My final talk is something a little different, and will be summarising the SeriousGeoGames project the best I can in 12 minutes! I will show a little of Humber in a Box and Flash Flood!, and sum up their successes. For a preview, check out the brand new Flash Flood! YouTube Free60 –
Please do come find me and say “hi”, or “Oi, your research is rubbish”, and if you have something you think I should see, let me know.
For the last couple of weeks photographs have been emerging from Hull’s Queen Victoria Square of a 250ft (75m in pre-Brexit measurements) wind turbine blade. There was even minute by minute coverage of its movements from the Siemens factory, across town, before settling in its final position straddling the toilets on top of which Victoria surveys her former Empire.
However, I am yet to visit this so-called blade, one of a triumvirate that characterise the ‘devil’s helicopters’, and I can’t help but feel that all the photographs I have seen have actually been photoshopped. Consider this photo below taken by Sam Spain –
It is obvious to my eye that the blade is not actually there. It has very clearly been added in after the photo was taken and not very well too. Just look at all the people going about their business and not fleeing in terror which would be the natural reaction to such an awe inspiring object.
Further evidence was provided to this conspiracy when it emerged that planning permission had not be sought for the blade. Why would anyone, willingly or otherwise, flout the edicts of our brave Development Control teams and risk the wrath of Planning Enforcement?
Ok. Enough of that. The blade is obviously there and even though I have yet to see it in person it looks incredible. However, every picture I see of it does look like its been photoshopped. My guess was that the blade will be incredibly smooth for aerodynamics reasons, allowing the wind to flow past it with little resistance – the way this lack of texture reflects the light into the lens look unnatural to us.
I asked the University of Hull’s Science guru, Prof Mark Lorch, for his thoughts on Twitter. Here is what he said –
“I’m thinking it’s because, if the lack of feature, high contrast with surrounding buildings, & sharp lines plus whiteness makes it difficult to expose both the blade and surrounding area… …but really plus it is in fact a giant conspiracy perpetrated by the goof folks of Hull.”
I knew it! It was a conspiracy all along!
If you can help us shed further light (and reflect it oddly) on the photoshopped blade mystery, please let us know.