Category Archives: Geomorphology

OTD Humber Storm Surge – 05/12/2013

No score and three years ago the storm surge of December 5th 2013 swept along the East Coast of England, and the Humber Estuary. There was flooding in Grimsby and Hull, and the port at Immingham was also badly flooded. One of the worst affected areas of the village of South Ferriby on the South Bank of the Humber, a few miles away from my home town of Barton-upon-Humber.

Since the event, my colleagues and I have done a lot of research and work based on this event. This post will briefly highlight some of this, how you can find out out more, and what we have planned for the future.

IMG_3862

At the time I was working on a project called Dynamic Humber helping to develop the CAESAR-Lisflood model. Although the original intention was to use the model to predict long-term geomorphic trends in the Estuary, basically how we can expect the mud and sediments to move and change over time, the storm surge changed the focus to flood risk.

We published our work on this in early 2015 – see the academic paper here.

The modelling technique was developed for other areas by my colleague Jorge Ramirez, and this research can be seen here.

This research led to us using our modelling to help the Environment Agency, and this work is ongoing still. We are also seeking to further the work of simulating the sediment processes within the Estuary,and understanding how this might influence future flood risk.

IMG_3816

One of the enduring images of the event was the breach it punched in the spit-like feature at mouth, Spurn Point. For nearly two centuries Spurn has essentially been a man-made structure, and its origins, true nature, and hence its future, are largely a mystery. Read more on this here.

In Easter 2015, a PhD project was begun to try and model the future of Spurn Point, merging a model of the North Sea with our model of Humber.

Finally, SeriousGeoGames emerged as a direct consequence of this event and our modelling of it. The first application, Humber in a Box, shows a simplified version of our Humber model in an attractive, immersive, virtual reality environment. By raising the sea level we can see how flood risk in the Estuary is likely to change over time.

Humber in a Box

If you have a Cardboard-style headset, try the YouTube demo here.

I’m currently working with some talented students from SEED Software on the second iteration of Humber in a Box, called TideBox. We hope to make the application more ‘self-led’ and more generic about estuaries and tide, making more accessible.

There are likely to be lots of exciting developments in 2017 and I will bring you them as soon as I can.

 

 

New Discussion Article in @EGU_ESurf

Some of Prof Tom Coulthard‘s and my own research has just been published as a discussion paper in the European Geoscience Union’s Journal – Earth Surface Dynamics. It’s my first proper open-source paper, so this release is not yet peer reviewed but will be reviewed in the same way with anonymous reviewers. However, it is also open to anyone to make comments (but these are public, so no hiding). After review, and edits, hopefully it will be published fully later in the year.

Kisdon Force on River Swale

Kisdon Force on River Swale

© Copyright George Tod and licensed for reuse under this Creative Commons Licence.

Here is where I try to write a ‘plain English’ summary of the work and the backstory. The work was conducted as part of the Natural Environment Research Council funded project, Flash Flooding from Intense Rainfall. The project hopes to improve our ability to forecast the intense, rapidly forming, but small and short-lived thunderstorms which can trigger flash flooding in the right conditions. We want to be able to predict their occurrence better and also understand the conditions required for flash flooding. We (Tom and I), in particular, look at the erosion and deposition which occur during the flash floods.

The computer model we use (CAESAR-Lisflood) was only able to use an input of rainfall which is averaged out over the whole area covered. These areas can be quite large, and as you probably know, if it’s raining in one part of the town you live, it might not be raining over another part. With the storms we are looking at they exist at a scale often much smaller than a whole river catchment, so that intensity is smoothed out by the model. This will likely reduce local river flows (in the model) and consequently reduce the amount of material (rocks, stones, mud etc) moved around (in the model).

Clearly, we needed to add the ability to represent rainfall in much greater detail, so I came up with a plan and arranged to meet with Tom to discuss how I was going to build this into to the computer code. I sat down with Tom and told him my plan, and in typical Tom fashion he tells me “I’ve already done this, I’ll send you the code”.

This single sentence saved me several months of coding and debugging and banging my head on my desk.

We used rainfall records taken from the MetOffice’s archive based on weather RADAR measurements. For the River Swale catchment (the catchment of choice for testing CAESAR-Lisflood), this data was available in grid squares of 5 km x 5 km, and recordings every 15 minutes. We wanted to test how the model reacts to the same rainfall data but applied in different resolutions, so we averaged out this data to various resolutions, both spatially (5 km, 10 km, 20 km and full catchment), and temporally (15 min through to 24 hours).

Incredibly, it made a big difference, with the best resolution (5 km every 15 minutes) moving over twice as much material as the worst (Full catchment every 24 hours) in some cases! We then looked at the longer term impacts by repeating our rainfall record (but jumbling up the locations at the end of each ten year cycle) for 1000 years (in the model). This showed that using the best resolution rainfall instead of the worst predicted more erosion in upland areas, and more deposition in lowland areas – this has implications for studies looking at the long term development of landscape that often use averaged rainfall records which miss out this detail.

This is because of the relationship between the discharge of a river (the amount of water flowing past a point in a specified time) and the amount of material moved is disproportionate. We called it ‘non-linear’, in that a small increase in the discharge results in a big increase in material moved – by representing the rainfall in greater detail, the model focusses it over a smaller area for a shorter amount of time, increasing the discharge in that section of the river.

The research also highlights the need to consider how our rainfall is likely to change with climate change. Often, only the overall change in volume of rainfall is considered but if this is in the form of frontal rain which covers large areas over long periods, the rain is low intensity and will unlikely cause flash flooding or move much material. If we are to expect an increase in the intense thunderstorms then we can expect our rivers to become more active in the future – the implications of which are as yet unknown.

The paper is free to read, so does not require a subscription, and can be viewed here.

 

 

Flash Flood! from @seriousgeogames

As I have a brief hiatus whilst I wait for ArcMap to select a few million Lidar points, I thought I would share a post from the SeriousGeoGames blog. It’s all about the new application I’m developing with BetaJester Ltd.

“Flash Flood! Our new project with @BetaJesterLtd #MadewithUnity

We are pleased to announce that we have started working with developers from BetaJester on our latest project, Flash Flood!

Flash Flood! is being produced as part of the Flash Flooding from Intense Rainfall (FFIR) research programme, funded by the Natural Environment Research Council (NERC), and is designed to highlight the destructive power of flash floods. This work has taken particular significance in light of the recent flooding in the UK over December.”

Read the full post, here.