Category Archives: education

Grow me a River

I need a river. Not a real one but a model one. As I develop my YouTube channel, Model Life, I want to be able to demonstrate the playability of numerical models by doing experiments and letting viewers decide what to do next. Think of the EmRiver mini-flumes but in a computer and made of numbers instead.

People playing with an EmRiver mini-flume - a shallow metal tank filled with shredded plastic sand. Water is pumped into it to simulate the development of rivers.

An EmRiver mini-flume demonstrated by the Earth Arcade for the British Science Festival in Hull, 2018.

The easiest thing to do would be to use data from a real river. However, whenever you do anything with real world data you risk playing games in a way that affects real people and their property. No, I needed something made from scratch. I need to grow a river from nothing.

Rivers are complex things and growing one takes a while. I’m not really sure how long it takes for a river to ‘mature’ but I decided 500 years would be a good start. Obviously, I’m not growing a real river, I’m growing one in a numerical model called CAESAR-Lisflood – it won’t take 500 years as models tend to be quicker than real life but still a long time, 100 days to be exact.

What are numerical models, on Model Life

Starting on January 1st with a featureless plain and shallow straight channel to get it going, I will be flowing virtual water through the model. Each day, the model will process 5 years’ worth of data, simulating the flow of water and the processes of geomorphology – the erosion, transport, and deposition of mud and rocks.

You can follow along on my FloodSkinner YouTube channel, a support channel for Model Life – there will be a new video every day for 100 days. You can join the conversation on YouTube or via the Fediverse or Twitter – I’d love to see your predictions of how you think the river will change next.

Games for Geoscience #EGU18 @EuroGeosciences

I am super-excited to be Convening a session on Games for Geoscience at the 2018 General Assembly of the European Geoscience Union (EGU). In fact, I am so super-excited, I am prepared to use the phrase ‘super-excited’. I am also super-excited to be co-convening alongside two of my favourite people, Sam Illingworth and Rolf Hut.

I like playing games. Personally, I’m not a fan of board games, I prefer games with a narrative – I like tabletop strategy games, having been addicted to Games Workshop games since the age of 10. I like computer games, but having slow reactions and no hand-to-eye co-ordination, I have to stick to games like Football Manager (which my wife describes as ‘just answering emails’).

It’s probably not surprising then my research revolves around numerical modelling. There is great potential for game-like application for numerical modelling – I once got a group of 40+ 9-year olds running CAESAR-Lisflood by describing it as ‘Minecraft with worse graphics’ – and those who work with them often have a playful curiosity. We like to ask questions like ‘I wonder what happens if I do this?’, and this playful curiosity can lead to the discovery of some of the most fundamental knowledge about how our planet works.

From the original hacked version of CAESAR-Lisflood, through to TideBox and the Defend the City workshop, I’ve found that the numerical model has lent itself to a gaming environment extraordinary well for the use in teaching and public engagement.

Games are pervasive throughout Geosciences, finding use in research, in teaching, and in wider communication. They are powerful training tools. I bet you have used or played games in your work, maybe without even realising it. If you have, then this is the session for you! We are not going to be strict about definitions for what is considered a game or not, just as long as it is playful, interesting, and most importantly, fun.

Abstract submission is open from 13th October 2017, and closes 10th January 2018.

If you’ve never submitted to an Educational and Outreach Symposia (EOS) session before, I would encourage you to do so – they are very enjoyable, and as they don’t prohibit you submitting another Oral abstract for another session they are great way to maximise the exposure of your research.

You find more details here.

Alongside the session we are hoping to host a related gaming session, giving us all the opportunity to try each other’s games – have something you want to bring along? Let us know.

EGU Blood Bowl Cup – I’m also interested in running the first ever EGU Blood Bowl Cup. I only need at least one opponent to make this happen, so let me know if you want in. I might even make a special pitch for the occasion.

Find me at #EGU17

It’s almost time to go to Vienna again for the 2017 General Assembly of the European Geoscience Union, or #EGU17. It’s promising to be another awesome week of science, schnitzel, and the collection of cold bugs from around the globe. Incredibly, it will be my fifth EGU, and I have the pleasure of being joined by a couple of first-timers from my research group – I’m looking forward to showing them the ropes.

I have two oral abstracts and a poster at this year’s meeting –

EGU2017-15699 | Orals | GM3.3/SSS3.13/TS4.6

LEMSI – The Landscape Evolution Model Sensitivity Investigation
Christopher Skinner, Tom Coulthard, Wolfgang Schwanghart, and Marco Van De Wiel
Wed, 26 Apr, 16:30–16:45, Room N1

This talk will show the results from our global sensitivity analysis of the CAESAR-Lisflood model. This has been a large piece of modelling work, and seems to have been going forever. Our computers have been busy for well over a year, so it’s great to get the results out there.

EGU2017-12624 | Posters | GM3.3/SSS3.13/TS4.6 | | Highlight

Influence of Rainfall Product on Hydrological and Sediment Outputs when Calibrating the STREAP Rainfall Generator for the CAESAR-Lisflood Landscape Evolution Model
Christopher Skinner, Nadav Peleg, and Niall Quinn
Wed, 26 Apr, 17:30–19:00, Hall X2

This poster has been selected by the session conveners as being of public interest. We’ve used a rainfall generator to produce ensembles of high spatial and temporal resolution rainfall, and used this to drive the CAESAR-Lisflood model – the results are very interesting indeed!

EGU2017-764 | Orals | EOS5

SeriousGeoGames – Geoscience Virtual Reality Experiences for Festival Settings
Christopher Skinner
Thu, 27 Apr, 10:45–11:00, Room L4/5

My final talk is something a little different, and will be summarising the SeriousGeoGames project the best I can in 12 minutes! I will show a little of Humber in a Box and Flash Flood!, and sum up their successes. For a preview, check out the brand new Flash Flood! YouTube Free60 –

 Please do come find me and say “hi”, or “Oi, your research is rubbish”, and if you have something you think I should see, let me know.

See you in Vienna!

Hurricane in the Humber : Modelling the Unthinkable

We’ve all been stunned by the images of Hurricane Matthew tearing through the southern States of the east coast of the USA, and the footage of the resulting storm surge sweeping into these coastal areas. We should not forget Haiti and the carnage once again unleashed on this nation, and the ongoing struggles the people will have there for years to come. The power of nature can simultaneously be awe inspiring and horrendously destructive.

In the UK we are relatively blessed in our sheltered position from natural disasters – it is difficult to imagine just what it is like as a nation to suffer an event on this magnitude, just as we could scarcely imagine what the impact of an earthquake or a volcano might be. But what if the unthinkable did happen? What if Hurricane Matthew did hit the UK with the full force of a Category 4 or 5 storm? How would the storm surge look like?

My research involves using numerical (computer) models to understand how nature works, in particular the movements of water. In the past I have used these models to simulate the workings of the Humber Estuary, UK, and some of that work includes simulating “worst case scenarios”. Before the 2013 storm surge this was often thought to be equivalent of the 1953 event, but now the baseline is 2013. On December 5th 2013, a storm in the North Sea caused a storm surge of around 1.8 m to form, coinciding with a high-tide resulting in the storm tide1.

1To pose a threat a storm surge needs to coincide with a high-tide. This combination is called a storm tide. A surge which coincides with a low-tide probably will not pose a risk, and the peak water levels will usually be lower than that of a normal high-tide. This obviously depends on the size of the surge and local difference between low- and high-tides.

A category 4 or 5 hurricane hitting the Humber and the UK at that strength is way beyond our “worst case scenario”, and reveals little to us about the nature of the Humber and the state of our defences. However, simulating it does provide prospective of the scale of the event and helps us understand just how powerful and destructive they are. At St Augustine, Florida, the surge was estimated to be 2.75 m, adding this swell to the tidal sea level – looking at the surge from 2013 this is nearly 1 m greater.

The represent this in our Humber model I have done nothing more sophisticated than simply adding 1 m height to all the water level data we use to simulate the 2013 flooding. The video below shows the results – it looks pretty bad and it would be, but we need to consider some aspects of the model to fully understand what we are seeing. The model uses a smooth representation of the land surface, as in it has no buildings, walls, roads, hedges, tree etc which would stop or slow the flow of water, although it does have a representation of flood defences. This means once the water levels exceed the defences and spill over on to the land the water can just keep flowing, when in reality it would be stopped by obstacles – so the area flooded in the model is larger, yet probably shallower, than we would expect.

This is truly an unthinkable event and we would not expect a surge of 2.75 m to be seen in the Humber. However, global sea levels are rising and our best predictions suggest that the base sea level in the Humber will be around 1 m higher in 100 years time – from this point, the 1.8 m surge from the 2013 event would cause water levels of the same height as a 2.75 m surge in the present day. As our climate warms, providing more energy to the atmosphere, we can also expect our weather to become more stormy and events like 2013 will become more common. This paints a bleak picture and presents coastal areas like the Humber a major challenge for the rest of this century.

The good news is that those responsible for our flood defences are aware of this challenge and are developing their plans to help us face it. Our model is already out of date as several areas around the Humber have had their flood defences improved since 2013, and there are plans for more – this process will be continuously assessed and developed in the future to keep people and property safe. Models such as our will be used to test those plans and the contribute to designing new schemes. The challenge is great but we can meet it.

Hull University Science Festival with @SeriousGeoGames

It’s that time of year again, one of the most exciting times of the year for me. This weekend, on Friday 18th and Saturday 19th, is the Hull University Science Festival. It’s my fourth time presenting an exhibit here, and it’s come a long way. This year, I will be leading a team of helpers with an exclusively SeriousGeoGames exhibit – on behalf of the Department of GEES.

In 2013, when the event was called the Science Showcase and took part in Hull Town Hall, I was inexperienced (still to submit my thesis!), and was asked to present the Dynamic Humber Project I was employed on. Our exhibit was not very good, composing a stale poster and an informative, but not very interesting, presentation we had to project on to the ceiling! We were later joined on the ceiling by the plastic balls from Becky Williams’ awesome liquid nitrogen volcano demonstration!

My Mother-in-law, Beverley, trying Humber in a Box

In 2014, I stepped up my game a little and so did the event. The first true Hull University Science Festival, we were housed in a large marquee on Campus. I presented a hacked version of the Humber CAESAR-Lisflood model, with a slider to raise sea level – it was the precursor to Humber in a Box. The participants found it interesting when they used it, but many people bypassed us as we were sandwiched between a 3D Printer and HIVE – to be honest, I would have done the same.

My favourite ever interaction came during this event, which went something like this –

Me – You move the slider and you raise the sea level in the Humber.

Schoolgirl 1 – (With full sincerity) In real life?

Me – (Struggling to come up with a reply) No, just in the model.

Schoolgirl 2 – (Said in a way only a close friend could) Don’t worry about her, she’s really thick.

I’m not sure you can every really train or prepare yourself for conversations like this! She wasn’t “thick” as her friend cruelly suggested, and I am constantly blown away by how bright and engaged the school pupils who visit us are – it really is a joy explaining our science to them.

Last year, I had Humber in a Box at my disposal for the first time. The exhibit I was part of also featured the River in a Box mini-flume, and the this and the excitement of the VR headset ensured a busy couple of days!

Now in 2016, we will be presenting Humber in a Box, but also Flash Flood! for the first time. We have be demonstrating the application on a large TV, and you’ll get the chance to explore our virtual river valley. We will also have some of the field equipment used to make the application on display. I’m really proud of Flash Flood! and am very excited about demonstrating it in public for the first time.

Looking forward to seeing you there! Details here.