Hurricane in the Humber : Modelling the Unthinkable

We’ve all been stunned by the images of Hurricane Matthew tearing through the southern States of the east coast of the USA, and the footage of the resulting storm surge sweeping into these coastal areas. We should not forget Haiti and the carnage once again unleashed on this nation, and the ongoing struggles the people will have there for years to come. The power of nature can simultaneously be awe inspiring and horrendously destructive.

In the UK we are relatively blessed in our sheltered position from natural disasters – it is difficult to imagine just what it is like as a nation to suffer an event on this magnitude, just as we could scarcely imagine what the impact of an earthquake or a volcano might be. But what if the unthinkable did happen? What if Hurricane Matthew did hit the UK with the full force of a Category 4 or 5 storm? How would the storm surge look like?

My research involves using numerical (computer) models to understand how nature works, in particular the movements of water. In the past I have used these models to simulate the workings of the Humber Estuary, UK, and some of that work includes simulating “worst case scenarios”. Before the 2013 storm surge this was often thought to be equivalent of the 1953 event, but now the baseline is 2013. On December 5th 2013, a storm in the North Sea caused a storm surge of around 1.8 m to form, coinciding with a high-tide resulting in the storm tide1.

1To pose a threat a storm surge needs to coincide with a high-tide. This combination is called a storm tide. A surge which coincides with a low-tide probably will not pose a risk, and the peak water levels will usually be lower than that of a normal high-tide. This obviously depends on the size of the surge and local difference between low- and high-tides.

A category 4 or 5 hurricane hitting the Humber and the UK at that strength is way beyond our “worst case scenario”, and reveals little to us about the nature of the Humber and the state of our defences. However, simulating it does provide prospective of the scale of the event and helps us understand just how powerful and destructive they are. At St Augustine, Florida, the surge was estimated to be 2.75 m, adding this swell to the tidal sea level – looking at the surge from 2013 this is nearly 1 m greater.

The represent this in our Humber model I have done nothing more sophisticated than simply adding 1 m height to all the water level data we use to simulate the 2013 flooding. The video below shows the results – it looks pretty bad and it would be, but we need to consider some aspects of the model to fully understand what we are seeing. The model uses a smooth representation of the land surface, as in it has no buildings, walls, roads, hedges, tree etc which would stop or slow the flow of water, although it does have a representation of flood defences. This means once the water levels exceed the defences and spill over on to the land the water can just keep flowing, when in reality it would be stopped by obstacles – so the area flooded in the model is larger, yet probably shallower, than we would expect.

This is truly an unthinkable event and we would not expect a surge of 2.75 m to be seen in the Humber. However, global sea levels are rising and our best predictions suggest that the base sea level in the Humber will be around 1 m higher in 100 years time – from this point, the 1.8 m surge from the 2013 event would cause water levels of the same height as a 2.75 m surge in the present day. As our climate warms, providing more energy to the atmosphere, we can also expect our weather to become more stormy and events like 2013 will become more common. This paints a bleak picture and presents coastal areas like the Humber a major challenge for the rest of this century.

The good news is that those responsible for our flood defences are aware of this challenge and are developing their plans to help us face it. Our model is already out of date as several areas around the Humber have had their flood defences improved since 2013, and there are plans for more – this process will be continuously assessed and developed in the future to keep people and property safe. Models such as our will be used to test those plans and the contribute to designing new schemes. The challenge is great but we can meet it.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s